Team Topologies Book Summary – Part 1 of 3: Key Concepts

Team Topologies is one of the latest books published by IT Revolution (the excellent company created by Gene Kim the co-author of The Phoenix Project and author of The Unicorn Project).  Team Topologies was written by Matthew Skelton and Manuel Pais (the people behind the DevOps Topologies website) but it is far more than an ‘extended dance remix’ of that.  The book takes a much wider view on team designs that make companies successful and considers the full socio-technical problem space.

This blog series is a set of highlights from the book followed by some suggestions of what to do with the information.  I hope it will also inspire you to read the book and have some fresh thoughts about improving your organisation.

Conway’s Law Demonstrates Team structures are incredibly important

Conway’s Law is the famous observation that the structure of teams (or more specifically the structure of information flow between groups of people) impacts the design of a system.  For example, if you take a 4-team organisation and ask them to build a compiler, you will most likely get a compiler that has 4 stages to it.  This is important because of the implication that the structure of Teams doesn’t just impact governance, efficiency, and agility, it also impacts the actual architecture of the products that get built.  The architecture of products is vitally important because of the heavy bearing it has on the agility and reliability of not just systems, but the businesses driven by them.

So Conway’s law teaches us two things:

  1. Team designs are very important because good team designs lead to good software design and good software design leads to better more effective teams (or if you get it wrong the cycle goes the other way).
  2. The factors that influence both a good architecture as well as good teams need to be considered when designing teams, team boundaries, and the planned communication required between teams.

General guidance for great teams

The book doesn’t overlook covering general factors that influence high performing people and teams.  For example:

  • Team sizing – Dunbar’s number is highlighted for its recommendation about the limits of how many people can successfully collaborate in different ways:
    • The strongest form of communication happens in an individual team working closely together with a very consistent shared context and specific purpose.  In software this number is supposed to be 8 people.
      • The limit of people who can all deeply trust each other is 15 and there is also significance of the dynamics of 50 and 150 people.  So this can provide useful constraints when thinking about the design of teams of teams.
  • The importance of having long lived teams that are given enough time to get to a state of high performance and then stick together and capitalise on it.  Research shows teams can take 3 months to get to a point where a team is many times more effective than the sum of the individual members.  The better the overall company culture is, the easier changing teams can be, but even in the best cases the research recommends no less than a year.  The book also highlights that the well-known Tuckman team performance model (Forming, Storming, Norming, Performing) has been proven to be less linear than it sounds.  The storming stage has been found to restart every time there is a personnel or major change to the team.
  • Some aspects of office design are important.
  • Putting other team members first and generally investing in relationships and making the team an inclusive place to work is vital.
  • Defining effective team scope, boundaries, and approaches to communication.  This is the broadly the topic of the rest of the book (and this blog).

Team Design Consideration: Minimising Team Handoffs, Queues, and Communication Overhead

The book talks about the importance of organising for flow of change to software products.  In order to do that you need to consider team responsibilities and to minimise and optimise communication.  The book presents a case study from Amazon as exponents of “you build it, you run it” approaches.

You also need what the book calls “sensing” which is where an organisation possesses enough feedback mechanisms to ensure software and service quality is understood as early and clearly as possible.

Whilst teams may communicate and prioritise effectively within the boundary of their team, external communication across team boundaries is always much more costly and much less effective.  When teams have demands upon other teams, this can:

  • be disruptive and lead to context switching
  • lead to queues, delays, and prioritisation problems
  • create a large communication and management overhead.

I found the point about communication thought provoking because it’s often a popular idea that the more collaboration within an organisation, the better.  As the book states, in practice all communication is expensive and should be considered in terms of cost versus benefit.  A friend of mine Tom Burgess pointed out a nice similarity to memory hierarchy in Computer Science.  This also got me thinking about the parallels of people and the Fallacies of Distributed computing!

Team Design Consideration: Cognitive load

The book introduces a very helpful concept from psychology (created by John Sweller) called Cognitive Load.  This describes how much ‘thinking effort’ a particular ‘thing’ needs in order to be done effectively.  It observes that not all types of thinking effort are the same in nature:

  • Different tasks require different types of thinking
  • There are different causes of the need to think
  • There are different strategies for managing and reducing the effort required for the different types of thinking.

The types are:

  • Intrinsic Cognitive Load – this relates to the skill of how to do a task e.g. which buttons to press according to the specific information available and scenario.
  • Extraneous Cognitive Load – this relates to broader environmental knowledge, not related to the specific skill of the task, but still necessary, e.g. what are the surrounding process admin steps that must be done after this task
  • Germane Cognitive Load – this relates to thinking about how to make the work as effective as possible e.g. what should the design be, how will things integrate.

The strategies for managing each type of cognitive load are as follows:

  • Intrinsic Cognitive Load – can be reduced by training people or finding people experienced at a task.  The greater their relevant skill levels, the lower the load required to do the task.
  • Extraneous Cognitive Load – can be reduced by automation or good process design and discoverability.
  • Germane Cognitive Load – is really the type of work you want people focusing on.  However, the amount required is a factor of how much scope someone has to worry about.

This is all very interesting and applicable to individuals, but you might be wondering: how does this relate to organisational team design?  The book presents a very useful idea here: cognitive load should be considered in terms of the total amount required by whole teams.

Putting this in plainer terms, when you are thinking about team design and organisational structure, you need to consider how much collectively you are expecting the team to:

  • know
  • be able to perform
  • be able to make effective decisions about
  • be able to make brilliant.

The reason I found this so powerful is because it gives you a logical way to reason with the current fairly fashionable idea that end-to-end / DevOps / BusDevSecOps(!) teams are the utopia (or worse: the meme that if there are separate teams in the value stream you are not doing DevOps and you are doing it wrong).  Sure, giving as much ownership of a product or service as possible to one team avoids team boundaries, but it also increases the cognitive load on the team and potentially the minimum number of people needed in a team.

Decomposing and fracture planes

So a simplified summary so far:

  • Amazon have helped highlight the benefit of minimising handoffs, queues, and communication
  • Sweller has taught us to avoid giving a team too much Cognitive load
  • Dunbar has taught us to keep teams at around 8 people.

At this point we have to consider the amount of scope assigned to a team as our way to satisfy the above constraints.  If we can keep it small enough, perhaps we can still give them end-to-end autonomy whilst keeping team sizes down and cognitive load manageable.

This is where the book starts talking about a concept of Fracture Plains.  The name is a metaphor about how when stonemasons break rocks, they focus on the natural characteristics of the structure of the rock in order to break them up cleanly and efficiently.  The theory is that software systems also naturally have characteristics that create more effective places to divide things up.  The metaphor is especially poetic considering large tightly coupled software systems are often likened to monolithic rocks.

The book provides a useful discussion of different types of fracture plane to explore including:

  • Business domains (i.e. where the whole domain driven development and bounded contexts design techniques come into play)
  • Change cadence i.e. things that need to change at the same pace
  • Risk i.e. things with similar risk profiles
  • (Most important of all) separation of platform and application (more on that to come).

Ideally all of these can help decompose systems whilst minimising cognitive load and keeping team sizes small enough.

In Part 2 I’ll share the reusable patterns the book proposes for doing this.

4 thoughts on “Team Topologies Book Summary – Part 1 of 3: Key Concepts

  1. Pingback: The Importance of Developer Experience in the PaaS Age | Mark Rendell

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s